Mixing Rates of Supercritical CO₂ with Brine in Deep Sedimentary Formations

B. Peter McGrail Mark D. White Paul F. Martin H. Todd Schaef

Second National Carbon Sequestration Conference Alexandria, VA May 7, 2003

Injection Scenario for Deep Saline Formation

- ▶ Lower density of scCO₂ as compared with brine causes the injected CO₂ to float as a bubble restrained by low permeability caprock
 - Area of review around well is determined by injection rate and rate of buoyancy-driven brine turnover
- ▶ Reduce time required for complete dissolution and mixing of the CO₂ into the formation brine

Perturbation Theory of Hydrodynamic Instability

Linearized Perturbation Bernoulli Equations

$$\frac{1}{\varepsilon} \frac{\partial \varphi'}{\partial t} + \frac{P}{\rho_1} + \frac{\mu_1}{\rho_1 K_1} + gz = 0$$

$$\frac{1}{\varepsilon} \frac{\partial \varphi'}{\partial t} + \frac{P}{\rho_2} + \frac{\mu_2}{\rho_2 K_2} + gz = 0$$

$$\sigma = \frac{\varepsilon \left(\frac{\mu_1}{K_1} + \frac{\mu_2}{K_2}\right)}{2(\rho_1 + \rho_2)} \left[\sqrt{1 + \frac{8\pi g}{\varepsilon_1^2} \frac{(\rho_2 - \rho_1)(\rho_1 + \rho_2)}{\left(\frac{\mu_1}{K_1} + \frac{\mu_2}{K_2}\right)^2} - 1} \right]$$

perturbation wavelength

If
$$\rho_2 > \rho_1$$
, $\sigma > 0$:

- system is unconditionally unstable
- perturbation grows with time

Perturbation wavelength will depend on structure, properties, and inhomogeneities in porous medium.

Propagation of Perturbation

Finger Velocity

$$V_f = \beta \frac{(\rho_2 - \rho_1)gK}{\varepsilon \mu}$$

$$\frac{\text{Convective Flux}}{\text{Diffusive Flux}} = \frac{f_c \beta (\rho_2 - \rho_1) gK}{\epsilon \mu \sqrt{\frac{4\epsilon D}{\pi t}}}$$

Experimental Challenges

- Large enough pressure cell to investigate mixing phenomena on a relevant scale
- Visual/spectroscopic interrogation of plume development
- Capability of operating for extended time periods with SCCO₂ and brine solutions

Cell dimensions: 45.4 cm (*length*) x 14.3 cm (*height*) x 1.27 cm (*depth*)

STOMP-CO₂ Simulator

- H₂O-NaCl-CO₂-Energy and H₂O-NaCl-CO₂ operational modes of the STOMP simulator (Subsurface Transport Over Multiple Phases)
- Three mass constituents
 - water, salt and carbon dioxide
- Four phases
 - aqueous, SCCO₂, precipitated salt, and geologic media
- Complete EOS module
 - Physical properties (density, viscosity, etc.)
 - Transport properties (thermal conductivity, diffusion, permeability)
 - Thermodynamic properties (enthalpy, solubility, fugacity, Henry's constant)

STOMP-CO₂ Simulation Parameters

- Initial conditions: 30/20 Accusand saturated with pure water, 13.8 MPa, 25°C
- Inflow port: Liquid CO₂ at 13.8 MPa, 25°C, 4.29 cm³/min
- Outflow port: 13.8 MPa, 25°C
- Computational domain: 100 x 50 uniform grid cells 0.454 cm (length) x 0.286 cm (height) x 1.27 cm (width)

STOMP-CO₂ Simulation of Injection Experiment (No Density Dependence)

STOMP-CO₂ Simulation of Injection Experiment (With Density Dependence)

CO₂ Injection Test (No Porous Medium)

CO₂-H₂O Interface Tracking

CO₂ Injection Test (Accusand)

CO₂ Injection Test (Accusand)

Conclusion

- Buoyancy-driven convection will significantly enhance CO₂ mixing under certain reservoir conditions
- Significantly better understanding of the factors that control fingering convection in porous media is needed
- Improved models of buoyancy-driven convection with SCCO₂ in porous media requires comparison with difficult-to-perform experiments
- New pressure cell shows promise for investigating 2-D fingering convection in porous media under supercritical conditions

